Main /
## Doing A Energy-only Geometry Optimization In ParallelWhile geometry optimizations are best done with analytic gradients (and CFOUR has analytic gradients for most methods), an energy-only geometry optimization is something which one should avoid doing. However, there are cases (for example, EOM-CCSDT) where there are no gradients available for a useful method, and the METHOD=ENERONLY approach to a geometry optimization is unavoidable. Running such a calculation in serial can be quite costly as a number of energy points must be run to evaluate each numerical gradient used in the optimization. Fortunately, a strategy entirely analogous to those used for parallel harmonic and anharmonic frequencies can also be used for optimizations, which is outlined here. First, construct your ZMAT file for the optimization, making sure to use the keywords METHOD=ENERONLY and FREQ_ALGORITHM=PARALLEL (actually you are not calculating frequencies, so this is perhaps a strange keyword choice...). An example is given below for formamide, using SCF and a small basis (which makes this a good guinea-pig test case to make sure you are doing all steps correctly). formamide |

Page last modified on July 23, 2014, at 04:44 PM

This page has been visited 160 times since April 2020.

CFOUR is partially supported by the U.S. National Science Foundation.