From Cfour

Main: EOM And CC-LR Methods For Excited Ionized And Electron-attached States

I. Electronically excited states

a) configuration interaction singles (CIS) approaches

CIS, also known as Tamm-Dancoff approximation (TDA))
I. Tamm, J. Phys. USSR 9, 449 (1945)
S.M. Dancoff, Non-Adiabatic Meson Theory of Nuclear Forces, Phys. Rev. 78, 382 (1950)
J.B. Foresman, M. Head-Gordon, J.A. Pople, and M.J. Frisch, Toward a systematic molecular orbital theory for excited states, J. Phys. Chem. 96, 135-149 (1992)

CIS plus a perturbative corrections for doubles (CIS(D))
M. Head-Gordon, R.J. Rico, M. Oumi, and T.J. Lee, A doubles correction to electronic excited states from configuration interaction in the space of single substitutions, Chem. Phys. Letters 219, 21-29 (1994)

CIS(D) gradients
J.F. Stanton, J. Gauss, N. Ishikawa, and M. Head-Gordon, A comparison of single reference methods for characterizing stationary points of excited state potential energy surfaces, J. Chem. Phys. 103, 4160 (1995)

b) via coupled-cluster linear response (CC_LR) theory

review on CC response theory
O. Christiansen, C. Hättig, and P. Jørgensen, Response functions from Fourier component variational perturbation theory applied to a time‐averaged quasienergy, Int. J. Quantum Chem. 68, 1-52 (1998)

CC linear response theory
H.J. Monkhorst, Calculation of properties with the coupled‐cluster method, Int. J. Quant. Chem. Symp. 11, 421-432 (1977)
H. Koch and P. Jørgensen, Coupled cluster response functions, J. Chem. Phys. 93, 3333 (1990)

CCSD-LR
H. Koch, H.J.Aa. Jensen, P. Jørgensen and T. Helgaker, Excitation energies from the coupled cluster singles and doubles linear response function (CCSDLR). Applications to Be, CH+, CO, and H2O, J. Chem. Phys. 93, 3345 (1990)

CC3-LR
O. Christiansen, H. Koch, and P. Jørgensen, Response functions in the CC3 iterative triple excitation model, J. Chem. Phys. 103, 7429 (1995)

CC-LR for general CC models
M. Kállay and J. Gauss, Calculation of excited-state properties using general coupled-cluster and configuration-interaction models, J. Chem. Phys. 121, 9257 (2004)

CC-LR for Mk-MRCC theory

T.-C. Jagau and J. Gauss, J. Chem. Phys. 137, 044116 (2012)

c) via an equation-of-motion coupled-cluster (EOM-CC) ansatz

EOM-CCSD
J.F. Stanton and R.J. Bartlett, J. Chem. Phys. 98, 7029 (1993)

EOM-CCSDT
K. Kowalski and P. Piecuch, J. Chem. Phys. 115, 643 (2001)
S.A. Kucharski, M. Wloch, M. Musial, and R.J. Bartlett, J. Chem. Phys. 115, 8263 (2001)
Y. Bomble, K.W. Sattelmeyer, J.F. Stanton, and J. Gauss, J. Chem. Phys. 121, 5236 (2004); present implementation within Cfour

EOM for general CC models
M. Kállay and J. Gauss, J. Chem. Phys. 121, 9257 (2004)

c) property calculations in CC-LR/EOM-CC

analytic gradients for EOM-CCSD/CCSD-LR
J.F. Stanton, J. Chem. Phys. 99, 8840 (1993) (theory)
J.F. Stanton and J. Gauss, J. Chem. Phys. 100, 4695 (1994) (implementation)
J.F. Stanton and J. Gauss, Theor. Chim. Acta 91, 267 (1995) (implementation)

analytic gradients for general EOM-CC/CC-LR
M. Kállay and J. Gauss, J. Chem. Phys. 121, 9257 (2004)

II. Ionized states

EOMIP-CCSD
J.F. Stanton and J. Gauss, J. Chem. Phys. 101, 8938 (1994)

EOMIP-CC3 and EOMIP-CCSDT-n
J.F. Stanton and J. Gauss, J. Chem. Phys. 111, 8785 (1999)

EOMIP-CCSD(2)
J.F. Stanton and J. Gauss, J. Chem. Phys.103, 1064 (1995)

analytic gradients for EOMIP-CCSD
J.F. Stanton and J. Gauss, J. Chem. Phys. 101, 8938 (1994)

III. Electron-attached states

EOMEA-CCSD
M. Nooijen and R.J. Bartlett, J. Chem. Phys. 102, 3629 (1996)

analytic gradients for EOMEA-CCSD
J.F. Stanton and J. Gauss, unpublished

Retrieved from http://slater.chemie.uni-mainz.de/cfour/index.php?n=Main.EOMAndCC-LRMethodsForExcitedIonizedAndElectron-attachedStates
Page last modified on December 19, 2019, at 12:27 AM